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S T U D Y  O F  M A X I M U M  S T R E S S  F I E L D  A L O N G S I D E  C R A C K S  

E M E R G I N G  F R O M  C O N T O U R S  O F  O P E N I N G S  I N  A P E R F O R A T E D  

P L A T E  

V.  M. M i r s a l t m o v  UDC539.375 

A cons iderab le  number  of pape r s  have appeared  in r ecen t  y e a r s  (see the r ev i ews  [1, 2]) in which the 
s t r e s s  s ta te  alongside c r acks  emerg ing  f r o m  the contour of a s ingle opening was investigated.  The analogous 
p rob l em of the s t re tch ing  of a plate  with a s ingle opening was the subject  of [3]. 

w 1. Let t he re  be  a doubly per iodic  a r r a y  of c i r cu l a r  openings having a rad ius  h (h < 1) and cen te r s  at the 
points 

Prn, = rae01 q-no% (m, n == 0, q-i ,  ___2 . . . .  ), 0)1=2 , c% =2/e ~, / > 0 ,  Im0)~>0.  

Symmet r i c  l inear  s l i t s  or ig ina te  f r o m  the contours  of the openings (Fig. 1). The contours  of the c i r cu l a r  open-  
tags and the edges of the s l i ts  axe f r ee  of loads.  We cons ider  the p rob l em of the s t re tch ing  of such a p e r f o r a t e d  
plate  by constant  f o r ce s  cr 2 = ~.~. in a di rect ion perpendicular  to the line of the s l i t s .  Because  of the s y m m e t r y  
of the boundary conditions and~he g e o m e t r y  of the region D occupied by the plate  ma te r i a l ,  the s t r e s s e s  a r e  
doubly per iodic  functions with fundamental  per iods  ~ l  and t02. 

To solve the p rob l em  in r easonab le  fashion,  we combine the method developed for  the solution of a doubly 
per iodic  e las t ic  p rob l em  [4] with the method for  plotting [5, 6] in explicit  f o r m  the Kolosov-Muskhe l i shv i l i  
potentials  cer tes 'pending  to unknown normal  d i sp lacements  along the s l i ts .  

Fig. 1 
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, r ( z )  
We r e p r e s e n t  the  s t r e s s e s  and d i s p l a c e m e n t s  [7] t h rough  the  K o l o s o v - M u s k h e l i s h v i l i  po ten t i a l s  r (z) and 

(~x -{- % = 4 Re  (I)(z) (z = x ~- iy), 

~ - -  z .  + 2 i , . ~  = 2[-'~I)'(z) + ~(z)1 ,  

2t~(u + ~ )  = xr - ,.q~'(z) - -  r  
(1)(z) = u  ,r(~) = ~' (z) ,  

(1.D 

~(3 - ~ v  ' (two--diTnensional d e f o r m a t i o n ) ,  
x _ - - v ) / ( t  + v)  ( two-d imens iona l  s t r e s s  s t a te ) ,  

~t and v a r e  the  s h e a r  modu lus  and  l?oisson coef f i c i en t ,  r e s p e c t i v e l y .  

B a s e d  on Eqs .  (1.1) and the  b o u n d a r y  c a u d i t i a a s  a t  the con tou r s  of  t he  c i r c u l a r  open ings  and at  the edges  
of  the  s l i t s ,  the  p r o b l e m  r e d n c e s  to a d e t e r m i n a t i o n  of  the  two func t ions  r  and q,(z), wh ich  a r e  , n s l y t i c  in 
the  r e g i o n  D, f r o m  the  b o u n d a r y  c o n d i t i o n s  

~(,) + ~ )  - [-~r + ~(~)lento = o; (1.2) 

(l)(t) + (1)(0 + tc~'(t) + ~ ( t )  = 0,_ (1 .3 )  

w h e r e  ~- =~te ie  + m ~ l + m a t ,  m ,  n=O,  :~ 1, * 2  ...  ; t is the  a f f ix  of  po in ts  on the  edges  of  the s l i t s .  

We s e e k  a so lu t ion  of  the  b o u n d a r y - v a l n e  p r o b l e m  (1.2), (1.3) in the  f o r m  

�9 (I}(z) = (I)1(~') "~ (~)2(Z)' ]t~(g) = WIll(Z) -~- /I?2(2[); i l .4)  

r (') - - ~  ~ g (x) ~ (~ - ~) ax + A, (1.~) 
L 

~ 1  (z) - ~-  [g (x z) + O (~ z) - x~' (x - -  "41 g (~) a z  + B; 
L 

t ~, ~ ~,~+2~(2~)(z) 

~-o (1.6) 
~I~ (g) - -  ~ O'y -~- ~ ~2h~c2 " ~ .  ~ (Z2h+2 ~2b.-~2q(2h~l) (Z) 

(2k ~- i)! ' 
h=0 h=0 

I m a ~  = Im~_ a -- 0, 

w h e r e  the  i n t e g r a l s  in (1.5) axe  t a k e n  a long  the  l ine  L ={ i- l ,  -~t ] + [k,  /]}; T(z) and [ (z) a r e  W e i e r s t r a s s  f unc -  
t ions ;  Q(z) is a s p e c i a l  m e r o m o r p h i c  funct ion  [4]; g(x) is the  funct ion  sought ;  A and B a r e  cons t an t s .  

One should  add to  Eqs .  (1.4)-(1.6) the  addi t iona l  condi t ion r e s u l t i n g  f r o m  the p h y s i c a l  e s s e n c e  of the  p r o b -  

l e m  

S g (x) dx  = O. (1.7) 

L 

At congruen t  po in t s ,  the  func t ions  ~/(z), ~ (z), and Q(z) s a t i s f y  the  condi t ions  [41 

y(z + (oi) y(z) = O. ~(z A- o)j) --  ~(z) = 8j (] = l, 2), 

O(z + r - O(z) = ( ~ ( z )  + vj, 

8j = 2~((oj/2), u = 2Q((oj2) - r 

(1.8) 

A z e r o  va lue  f o r  the  p r i n c i p a l  v e c t o r  of  the  f o r c e s  ac t ing  on an a r c  connec t ing  two congruen t  points  in D 
is equ iva len t  to 

q(z "4- oat) - -  q(z) = 0 (] = t ,  2), q(z) = r ~- zdP(z) "4- ~b(z) 

and l eads  to the  r e l a t i o n  

A + A + B = - - ( i / ~ 1 ) { 8 1 a  +-Vl-~ +-81(a + ~) - -  ~A~(81 + E )  - -  ~ , ~ , }  

when Eqs .  (1.7), (1.8} a r e  c o n s i d e r e d .  
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One can ve r i fy  that  the functions (1.4)-(1.6) under the conditions (1.7) define a c lass  of s y m m e t r i c  p rob-  
l ems  with doubly per iodic  dis tr ibut ion of s t r e s s e s .  

The unknown function g(x) and the constants  ~2k +2 and fl :~ +2 mus t  be  de te rmined  f r o m  the boundary con-  
ditions (1.2) and (1.3). 

Because  the condition of double per iod ic i ty  is sa t i s f ied ,  the s y s t e m  of boundary conditions (1.2) is r e -  
p laced by a s ingle  functional equation on the contour , =X e i0 , for example ,  and the s y s t e m  of conditions (1.3) 
by  a boundary condition on L. 

To formula te  equations with r e s p e c t  to the coeff icients  r +2 and fl$~+~ of the functions 02(z) and @2(z), 
we r e p r e s e n  t the boundary  condition (1.2) in  the f o r m  

(I)~ (x) + (I)~ (x) - -  [7~@~ (x) + W~ (x)]eU~e = ] i  (0) + i]~ (0), (1.9) 

where  

h (0) + q~ (0) = - r  (x) - r  (x) + [rrr (~) + ~FI (x)] o ~~ 

We a s s u m e  that  the function fl(0) +if2(0) is expandable into a Fou r i e r  s e r i e s  on I v I =~-. Because  of s y m -  
me t ry ,  this  s e r i e s  has the f o r m  

l l ( o ) + i l ~ ( 0 ) =  ~ A2ke 2ih~ ImA2k=0;  

A2h = ,-- ~ -  g (x) /% (x) dz, 
L 

2*t 2~  
i I,~ (z) = ~ ,f [2 Re[A+~(x--Xe~e)]} e-2~ked0 ~ �9 _ ~ ~ {~.e-~o~,(z _ ~ o ) +  

0 0 

+ ~ (~ - x ~ )  + o (~ - ~ o )  _ ~,~ (~ _ ~ o )  + B1 ~-~(~- , )o~.  

(1 .10)  

(1.11) 

Because  of the c u m b e r s o m e  na ture  of the functions f2k (x), the r e su l t  of the integraLion, which was ob-  
tained by means  of the theory  of r e s idues ,  is not presented .  

Replacing r r r  and ~I,2(v) on the left side of the boundary  condition (1.9) by their  expan-  
sions in Laurent  s e r i e s  in the neighborhood of z =0 and the r ight  side of Eq. (1.9) by  the Four i e r  s e r i e s  (1.10), 
and equating coeff icients  of identical powers  of e i0 , we obtain [4] two infinite s y s t e m s  of a lgebra ic  equations 
with r e s p e c t  to the coeff icients  ~2k +2 a n d  fl zk +2. They a re  not given because  of thei r  ex t r eme ly  unwie ldyform 
(see the s y s t e m s  (3.3) and (3.5) in Chap. 1 of [4]). 

Requir ing that the functions (1.4) sa t i s fy  the boundary  condition on the sl i t  edge L, we obtain the s ingular  
integral  equation 

~-t ~ g (t) g (t - -  x) dt + H (x) = 0, K (x) _ 3~ (x) + O (x) x 7 (x), (1 .12)  
L 

H (x) = A + A + B + 2 (I)~ i(x) + x ~  (x) + Y~ (x). 

The s ingular  equation (1.12) and the s y s t e m s  (3.3) and (3.5) f r o m  [4] a r e  bas ic  equations of the p rob lem 
which make it poss ib le  to de te rmine  the function g(x) and the coeff icients  ~2k+2 and B2k+2. Knowing the func- 
tions g(x), O~(z), and~I,2(z), one can de te rmine  the s t r e s s - s t r a i n  s ta te  of a pe r fo ra t ed  plate.  In the mechanics  
of b r i t t l e  f r a c t u r e  [8], the re  is pa r t i cu la r  in teres t  in the coefficient  of s t r e s s  intensity in the neighborhood of 
the end of a c rack .  In the p resen t  case ,  a c r ack  with one end at x =h e m e r g e s  f r o m  the su r face  of a c i r cu la r  
opening which is f r e e  of external  fo rces .  In this ca se  the s t r e s s  is bounded at the end x =~. and has a s ingu la r -  
ity at the other  end at x = / .  In pa r t i cu la r ,  we have for  the coefficient  of  s t r e s s  intensi ty KI at the ends of the 
c rack  at x = ~: l: 

Kx = 2"1/2:~1x --/[g(x). 

The function g(x) is bounded in the neighborhood of x = •  and has a s ingular i ty  of  o rde r  1/2 in thene igh-  
borhood of x = +l . 

The development  of a c rack  is de te rmined  by some  supp lementa ry  condition ass igned at the t ip of the 
c rack .  For  a l inear ly  elast ic  body, the supp lementa ry  condition is the G r i f f i t h - I r w i n  local f r a c t u r e  c r i t e r ion  

26~ 



o,21 I 
J,O ~,.. 

Fig.  2 

0,,~ 

] 

Fig. 3 

KI=KIc  (Kic is a constant  which c h a r a c t e r i z e s  the r e s i s t a n c e  of a m a t e r i a l  to c r a c k  propagation).  
tion makes  it poss ib le  to de t e rmine  the value of the m a x i m u m  (crit ical)  ex te rna l  f o r ce s  a ~ .  

Using the expansions [4] in the bas ic  p a r a l l e l o g r a m  of the per iods  

g z 2J+l 

~ = , ~ '  gk = , 

-~(z)=~+ . - p ~ =  , 
22~+2 

(21 + 2) P i + i  Z2i+i  t 
Q (~-) ~--- ~ /  22/_I_ 2 , T = T P ran ,  

~ i  

m, n = 0, ~1 ,  -4-2 . . . .  ; k = 2, 3 , . . . ,  

we br ing  Eq. (1.12) a f t e r  s o m e  s imple  t r an s fo rma t ions  to the f o r m  

This condi-  

-~- j ~ d~j + 7 d p (t) K0 (~--  ~0) d~ + H (t0) = 0, 
L L 

P ( t ) = g ( t ) '  ~ = + '  ~ o = - i  - '  ) ~ = T '  L = { [ ~ l ' - - ) ~ l + [ ) ~ x ' l l } '  

Ko (t)  = K ,  (~) - K (~), 

K(g) = Kj ~ . ~ l <  1, 

K.(~)= Z Ki ~ K O=r 

* fD 1 -- Kj = gi+,, Ko = - -  -~-(u -b61), K; = (j + 1) (p~+, - -  gj+,), ] = l, 2, 

n (to) = ~ + ~ [ ~ , ( 8 ~  + ~,) + g~x~g~] + 20~ (Lz) + ~,zol (too + ,v~ (~oZ). 

(1.13) 

One should add to the s ingular  in tegral  equation the supp lemen ta ry  condition (1.7) conver ted  to the f o r m  

y p (~) ,/~ = o .  (1.14) 
s 

Condition (1.14) de t e rmines  the s y m m e t r i c  solution of the problem.  For  p(~) - p ( - $ ) ,  Eq. (1.13)takes 
the f o r m  

�9 1 i 

K3(L g . ) = K o ( ~ - - ~ o )  + K o ( g + ~ o ) '  ~l<~go<l" 

( 1 . 1 5 )  

We conver t  Eq. (1.15) to a f o r m  m o r e  sui table  for  the determinat ion of its approx imate  solution. For  this 
purpose ,  we make  the subst i tut ion of va r i ab l e s  
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= u = - - ~  (~ + 1) + ;?,  

t - -  ~,~ 
Cg = ~0 = - T -  (n + l) + ~ .  

(1.16) 

Then the integration segment [k 1,1] t rans forms  into the segment [-1, 1] and the converted equation (1.15) 
takes the fo rm 

where 

t i 

-~- ~ + -if- p (T) B (~, x) dx + H * *  01) = 0, (1.17} 

p(~) = p(~); 

* - t  l \ 2 j + 2  j 
:Z(K ' ) =o+; 
j=O 

(2]-~ ~)(2 i) (2]- l) ( u )  _[_ (21 q- i)(21, (21- l ) . . .  [(21 q-1)-  (2i + i--l)] [ u  ~'~ 
AS----- ~(2i-t-1)-} -7-:3_ \~, -~. " " " 1-2. (21 + l) \'~'a ] )" 

For  s implici ty we set H , ,  (~) =H,  (~r Remember  that the function H , ,  (~/) contains the tmknown coefficients 
~2k+z, and/32k+ 2. 

We seek a solution of Eq. (1.17) which is bounded on the left end. The singular integral equation is 
usually regular ized in accordance with Kar l eman-Vecu  by reduction to a Fredholm equation. However, in t h e  
solution of problems which are  of interest  for applications, it is convenient to use one of the methods for direct  
solution of singular equations [9, 10]. We use the method developed in [11]. We represent  the solution in the 
form 

p(x) = p0(x)V(i q- +)/(t - -  -c). (1.18) 

Here p0(~-)is HSlder-eontinuous on [-1, 1] with the function p0(T) being replaced by Lagrangima interpolation 
polynomials constructed a t  Chebyshev mesh points, 

. . k + i  o e ~  
L,~[p o, x] = t__n ( ' ' U  Pk cos0_eos0k , T=eos0 ,  

h = i  

2 m - -  l pO=p0(xk), Xm=eOS0m' 0 ~ = ~ ,  r e = l , 2  . . . . .  n. 

Using the relat ion [10] 

t ~ cos n'rd'r, s i n  n 0 

.~ . } e o s u  = ~ '  
0 

i 
y F(x) dx 

--t v ~ l  

and Eqs. (1.11) and (1.16), we obtain the quadrature formulas  

O~<O~u,  n = l ,  2 . . . . .  

n 

F ( ) :z C0$ Ov 

271 .~{ p, (,)__ ~d" _ t ~-si-i-ff-ffc~ 0 p O E  cos m0~ sin ra0 § p0, 

t. j"  t ~ (i +cos 0,) B (cos 0, cosO,)pO; 2-~ p (x) B 01, x) dx = ~-n 
- - i  v ~ !  

l n 
A2k = ~ p, (t -j- cos 0v) 12k (cos 0v), 

(z .19)  

(Z.20) 

where 

I2~ (~) = - - y - 1 2 ~ ( ~ ) ;  ~llzh(~ ~) -- l ~ ( t ) .  
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Equations (1.19) and (1.20) make it possible to rep lace  the basic equations by an infinite sy s t em  of l inear  
0 of the des i red  function at mesh points and also algebraic  equations with r e spec t  to the approximate  values Pv 

with r e spec t  to the coeff icients  ~ak +~ and fl ~ +2. 

After  s imple computat ions,  the singular equation is rep laced  by the sys t em 

am~pv~ ~_ "~t H** (v~) = 0, m = i, 2, . . . .  n, (1.21) 

~ [ 'Orn Om _~ (__ , )'zn--V|O,~ ] am~=~-~'n t-~--ctg-Tctg 2 : ~ - ( i + v v )  B(~im'Tv) ' Tm=llTn" 

The sys t em (1.21) is connected (closed) by two infinite sys t ems  ((3.3) and (3.5) f r o m  [4]) in which the express ion  
(1.20) is inser ted  in place of A2k. The th ree  sys tems  specif ied complete ly  de te rmine  the so lu t ionof theprob lem.  
The coefficient  of s t r e s s  intensi ty is given by the express ion  

2 V ~ / ( i _ _  ~ ) ~ (__ i)Vp0ctg_~. Kx= -g- 

A regular triangular array with w I =2 and wg=2e(I/a)iTr was used for the numerical calculations. The calcula- 
tions were performed on an M=222 computer. Inthe system (1.21) we set n=10, 20, and 30, which corresponded 
to subdivision of the interval into 10, 20, and 30 Chebyshev mesh points, respectively. Using one of them, the 
unknown coefficients fl 2k +9. were then eliminated from the remaining equations. It turned out that the values of 
the critical external load and also of the coefficients C~k +9 and fl 2k +~ were essentially unchanged beginning with 
n=20 (agreed up to the sixth digit). 

oo - -  Figure 2 shows calculated results for the critical (maximum) load c~. = % V-~I/KIr as a function of the 
crack length l. = (l- ~)/~, for several values of the opening radius ~. =0.6, 0.5, 0.4, 0.3, 0.2, and 0.1 (curves 
1-6). 

As is apparent ,  s table development of a sys t em of c racks  (their mutual re inforcement)  is possible for  a 
r egu la r  t r iangular  a r r a y  at ce r t a in  values of the radius  ik of a c i r cu la r  opening. For  a plate with a double 
periodic sy s t e m of c r acks  (h =0) having the same basic per iods ,  t he re  is no possibi l i ty  of s tabil izat ion of c r ack  
growth. 

A solution for  other  external  loads can also be obtained in a s imi la r  manner.  

w Now le t the  mate r ia l  of a pe r fo ra ted  plate be ideally elastoplast ic  obeying the T r e s c a - S a i n t  Venant 
condition, according to which the msximum tangential  s t r e s s  at each point of a body does not exceed the shear  
flow limit  Ts(2Vs=Cr s, where  ~s is the l imit  of s t r e t ch  flow). It is known f r o m  the elast ic  solution of t hep rob -  
l em of s t r e tch  in a pe r fo ra ted  plate that the maximum s t r e s s e s  ~y occur  at the points t = * k  + n ~ l + n t v  2 (m, n= 
0, �9 1, * 2 . . . .  ). Regions of plast ic  deformation will a r i s e  under a ce r ta in  load in this case.  

We consider  the p rob lem of initial development of plastic deformations under uniaxial s t re tching of a th in  oO 
per fo ra ted  plate by fo r ce s  ~y.  We assume that the plast ic deformat ions  a re  concentra ted  along cer ta in  slip 
l ines originating at the contour  of an opening. The general  tendency toward the format ion  of plastic reginus  in 
the f i r s t  s tages of thei r  development in the fo rm  of na r row slip bands occupying an insignificant port ion of the 
body in compar i son  with its e las t ic  port ion is Well known exper imenta l ly  [12, 13]. This is par t icu la r ly  typical  
of mate r ia l s  which have a definite small  a r ea  of flow (metals such as soft s tee l  which tend toward re ta rda t ion  
of flow and which a r e  usually be t te r  descr ibed  by the T r e s c a -  Saint Venant condit ions)and also in the p resence  
of a s t r e s s  s ta te  with suff icient ly high s t r e s s  gradients .  F r o m  exact calculat ions,  plast ic  regions  have a ten-  
dency toward local izat ion in the slip line [14, 15]. For  example,  f r o m  an exact solution of the elastoplast ic  
p rob lem of biaxial  s t re tch ing  of a plate with c i r cu la r  openings found in [15], the plast ic zone is t r an s fo rmed  
f r o m  a c i r cu l a r  region  to an elongated region with a width- to- length ra t io  of approximate ly  1 : 4 even for devia- 
tion of the s t r e s s  s ta te  at infinity f r o m  the uni form state by 0.1 (Ae/(r  ~0.1).  As shown by exper iment ,p las t i c  
regions  in such cases  will be a segment of length d (d=l  - k )  (see Fig. 1). The thickness of the zone can be as -  
sumed to be zero .  In thin plates ,  it can be r ea l i zed  physical ly in the f o r m  of a s l ip plane at 45 ~ to the plane of 
the plate. Because  of local izat ion of plast ic deformat ions ,  the elastoplast ic  problem being cons idered  can be 
reduced  to the boundary p rob l em in the two-dimensional  theory  of e las t ic i ty  d iscussed in Sec. 1 with crs r e -  
placing the r ight  side of the boundary condition (1.3). The quantity l, which now cha rac t e r i ze s  the length of the 
plast ic i ty  zone, appears  in the solution of Eq. (1.13) a s a n  unknown pa rame te r  subject to determination.  

Since the s t r e s s  in an ideal e lastoplast ic  mater ia l  is bounded, the solution of the singular integral  equa- 
tion (1.13) should be sought in the c lass  of everywhere  bounded functions (s t resses) .  The boundedness of the 
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s t r e s s e s  at the ends • se rves  to de te rmine  the pa rame te r  l f r o m  which one can determine the length of the 
plast ic zone. 

This means that for  solution of Eq. (1.13} in the class  (1.18} in conjunction wi th the two infinite sys tems 
(see sys tems  (3.3) and (3 .5) in  [4]), the equation 

( -  1)'p  ctg T = 0  (2.1} 

should be added to the system (1.81). 

Equation (2.1) together with the systems noted makes up a closed system for determination of all an- 
kaowns in the problem. However, solution of this closed system for a given load o-~ is difficult because of the 
nonlinearity of the algebraic equations with respect to the unknown parameter I .  It is therefore simpler to 
assume  a given value of l and to de te rmine  the load acting on the plate. 

Figure  3 presen ts  curves  for  the dependence of the length of the plast ic i ty  zone on the dimensionless  ex- 
ternal  load o'S/or s for  severa l  values of the opening radius  2, =0.6, 0.5, 0.4, 0.3, and 0.2 (curves 1-5). 

Note that when lw 21 "* ~,  we have a periodic sys tem of c i r cu la r  openings with sli ts located along the x 
axis;  with I~(l ~ ~ and ~2 finite, we obtain a plate with a periodic sys tem of paral le l  c i rcu la r  openings with 
sli ts .  
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