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STUDY OF MAXIMUM STRESS FIELD ALONGSIDE CRACKS
EMERGING FROM CONTOURS OF OPENINGS IN A PERFORATED
PLATE

V. M. Mirsalimov UDC 539.375

A considerable number of papers have appeared in recent years (see the reviews [1, 2]) in which the
stress state alongside cracks emerging from the contour of a single opening was investigated. The analogous
problem of the stretching of a plate with a single opening was the subject of [3].

§1. Let there be a doubly periodic array of circular openings having a radius A (A < 1) and centers at the
points

Pop = moy -+ noy (m, n==0, 1, +2,...), 0,=2, a, =2k, 1>0, Imo,>0.

Symmetric linear slits originate from the contours of the openings (Fig. 1), The contours of the circular open-
ings and the edges of the slits are free of loads. We consider the problem of the stretching of such a perforated -
plate by constant forces oy=0 in a direction perpendicular to the line of the slits. Because of the symmetry

of the boundary conditions and the geometry of the region D occupied by the plate material, the stresses are
doubly periodic functions with fundamental periods w; and w,.

To solve the problem in reasonable fashion, we combine the method developed for the solution of a doubly
periodic elastic problem [4] with the method for plotting {5, 6] in explicit form the Kolosov—~Muskhelishvili
potentials corresponding to unknown normal displacements along the slits.

Fig. 1
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We represent the stresses and displacements [7] through the Kolosov—Muskhelishvili potentials & (z) and
¥ (z)
0, + 0y = 4Re D(2) (z = z 4 iy), - (1.1)
oy — 0, -+ ity = 2[z0'(2) + ¥(3),
2w + ) = %9(a) — 2¢'(2) — V@),
@) = ¢, Y& = ¥,

_ {3 ' (two-dimensional deformation),
3 —v)/(i +v) {two-dimensional stress state),

i and p are the shear modulus and Poisson coefficient, respectively.

Based on Egs. (1.1) and the boundary conditions at the contours of the circular openings and at the edges
of the slits, the problem reduces to a determination of the two functions ®(z) and \P(z), which are analytic in
the region D, from the boundary conditions’

®ft) + Bty — [O'(x) + ¥Y() Je2io = 7 (1.2)
®(F) + B + D@ + ¥F@) =0, (1.3)

where T =Ael® +mMwg+we, M, 0=0,x1, +2...; t is the affix of points on the edges of the slits.
We seek a solution of the boundary-value problem (1.2}, (1.3) in the form

- Bfz) = Dy(2) + D,(2), Pl2) = ¥y(2) + ¥of2); (1.4)
D, (2) = oo S‘g(x)é(x—z)dx-{—A (1.5)

L
%(z)=2;i—§[c<z—z)+o(z—z>'—zv<x—z>1g<x>dz+3;
L
e X 2m42,(2K),
@,(z):%cy + 24 azmzwv

1.6
AZEE2Q(2RED () (.6)

1 ;“._k‘r-v(-k) (‘ hnd
¥,(5) =505 + Z Bovsa Tty — 2 e T

Ima,, = Imf,, =0,

where the integrals in (1.5) are taken along the line L={ [-Z, -A] +A, l’]}; Yz) and ¢ (z) are Weierstrass func-
tions; Q(z) is a special meromorphic function (4]; g(x) is the function sought; A and B are constants.

One should add to Eqs. (1.4)-(1.6) the additional condition resulting from the physical essence of the prob-
lem

Slg (z) dz = 0. 1.7
;.

At congruent points, the functions ¥ (z), ¢ (z), and Q(z) satisfy the conditions [4]
W+ o) — ) =0, e+ o) — L) =8 (G =1, 2), .8

Qi + o) — Q@) = o) + 15
6} = 2&((01/2), Vi = 20((0]/2) —_— (1)7’?((1)}/2),
8,0, — 8,00p = 27, Vo0, — Y100y = 8,05 — 6;51-

A zero value for the principal vector of the forces acting on an arc connecting two congruent points in D
is equivalent to

gz + o) —g@) =0 (=1, 2), @) = o) + 0@ + PF)

and leads to the relation
A+ A +B=—1o){ba+ e+ 8(a +a) — a8, +7) — PG}

when Egs. (1.7), (1.8) are considered.
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One can verify that the functions (1.4)-(1.6) under the conditions (1.7) define a class of symmetric prob-
lems with doubly periodic distribution of stresses.

The unknown function g(x) and the constants oy 4+,and B g 4.4 must be determined from the boundary con-
ditions (1.2) and (1.3).

Because the condition of double periodicity is satisfied, the system of boundary conditions (1.2) is re-
placed by a single functional equation on the contour T =2 elf for example, and the system of conditions (1.3)
by a boundary condition on L.

To formulate equatibns with respect to the coefficients ag 44 and 4 3 of the functions &,(z) and Uy(z),
we represent the boundary condition (1.2) in the form

@, (1) + B, (1) — [703 (1) + ¥, ()] = £, (6) + if; (6), _ (1.9)
where
F1(8) + ify (8) = — @y (1) — By (1) - [T0] (v) 4+ ¥, (1)] 2.

We assume that the function f;(6) +ify(6) is expandable into a Fourier series on | 7] =A. Because of sym-
metry, this series has the form

1O +if, (0= 3 Ape®™®, ImAy=0; (1.10)
.k o

e 00

A= — 5 [ 8(2) fn ) 0, (1.11)
L

1]
a

ey

2%
fon (@) = o= | [2Re]A+(z—Ae®)]) e™**a0 — 5 f {Re~ O (2 — 2e™®) +
{ 0

@

+t(z —2e™®) + Q(z —2e®) — zy (2 — 1e™®) 4 B} e THB D0

Because of the cumbersome nature of the functions fy (x), the result of the integration, which was ob-
tained by means of the theory of residues, is not presented.

Replacing &4(7), &5(7), &'3(T), and ¥ 4(1) on the left side of the boundary condition (1.9) by their expan-
sions in Laurent series in the neighborhood of z =0 and the right side of Eq. (1.9) by the Fourier series (1.10),
and equating coefficients of identical powers of elf , we obtain [4] two infinite systems of algebraic equations
with respect to the coefficients a,k +,and By 1. They are not given because of their extremely unwieldy form
(see the systems (3.3) and (3.5) in Chap. 1 of [4]).

Requiring that the functions (1.4) satisfy the boundary condition on the slit edge L, we obtain the singular
integral equation

ﬁ—jg(t)K(t_x)d;+H(x)=o, K (@) =3 (2) +0 () — 2v (@) 1z
L .

H(z) = A+ A+ B+ 2®, (2) + 203 () + ¥, (2).

The singular equation (1.12) and the systems (3.3) and (3.5) from [4] are basic equations of the problem
which make it possible to determine the function g(x) and the coefficients o,k +5and Byk 4,. Knowing the func-
tions g(X), &,(z), and¥ 4(z), one can determine the stress —strain state of a perforated plate. In the mechanics
of brittle fracture [8], there is particular interest in the coefficient of stress intensity in the neighborhood of
the end of a crack. Tn the present case, a crack with one end at x=A emerges from the surface of a circular -
opening which is free of external forces. In this case the stress is bounded at the end x=A and has a singular-
ity at the other end at x=] . In particular, we have for the coefficient of stress intensity Ky at the ends of the
crack at x=+1:

K, = 2V 2n|z — l|g(z).
The function g(x) is bounded in the neighborhood of x=+X and has a singularity of order 1/2 in theneigh-
borhood of x==1 .

The development of a crack is determined by some supplementary condition assigned at the tip of the
crack. For a linearly elastic body, the supplementary condition is the Griffith—Irwin local fracture criterion
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Ki=KJe (Kfc is a constant which characterizes the resistance of a material to crack propagation)
tion makes it possible to determine the value of the maximum (critical) external forces o2

v
Using the expansions [4] in the basic parallelogram of the periods

. This condi-

i L gJ_HzZJ‘-H . ;1
L@ =2— Y &= o

i=1 m,n

7@ ==+ V &+ 1) 8544 523, 2 ?

22]+2

’
2k

J_

' (27+2)p 1
Q(2) = Z—Ez;_ﬁﬁzm“ T =~ Pun
=1

m,n=0, 41, +2,.. k=2, 3,. ..,

we bring Eq. (1.12) after some simple transformations to the form

p (&)

wERR Spqmg B 5+ H () =0, (1.13)

P©=HW§=%,%=%,M=%,=4HL—M+WA&
| Ky (8) = Ky (B) — K (2),

2j+2

K(E)ZEK,(%) §2j+1, rl<t,
=

TP S-S
K, (9= 2 K; (JI> §2;+1’ K, = oRed,,
=0

Ky=8p Ko=— &Gl +8), Ki=(+1)(pjs1—ge) =12,
H@aﬂwﬁu—hﬂﬂm+70+mﬂ&L+N&oh+&@A&D+WAW)

One should add to the singular integral equation the supplementary condition (1.7) converted to the form

5p(§)d§=0- (1.14)
L

Condition (1.14) determines the symmetric solution of the problem. For p(¢) = p(—§£), Eq. (1.13) takes
the form

'%F"‘g”% SKo(’é E)PE)E+HE) =0, . (1.15)

K, (E, §o) = Ko(s~— Eo) +EE+8)r M<<E <1

We convert Eg. (1.15) to a form more suitable for the determination of its approximate solution. For this
purpose, we make the substitution of variables
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“L%(r+1)+7~2' _ (1.16)

gz—_.—lL:

2
gozuoz

Then the integration segment [A;,1] transforms into the segment [~1, 1] and the converted equation (1 15)
takes the form

%S”J‘l“’% g PO B v+ Hea () =0, @17
-1
where
p(r)—p(s).
1 2j+2 .
B(n, 1 —— i—E)(x) uap
=0
{0 @GHDEHE—1 (v (214+1) (2 (2—-1) T (€3 ) R 7 ke ) § LAY
A’”{(ZJ_H)_F I-2-3 (To)'{'." + D S@FD ("u?)}

For simplicity we set H, , (1) =Hy (¢). Remember that the function Hx x (1) contains the unknown coefficients
Qok +3, and Bok +9.

We seek a solution of Eq. (1.17) which is bounded on the left end. The singular integral equation is
usually regularized in accordance with Karleman —Vecu by reduction to a Fredholm equation. However, in the
solution of problems which are of interest for applications, it is convenient to use one of the methods for direct
solution of singular equations [9, 10]. We use the method developed in [11]. We represent the solution in the
form

P = p( V{1 + ) r)/(1 — 7). ‘ (1.18)

Here py(7) is Holder-continuous on [-1, 1] with the function py(r) being replaced by Lagrangian mterpolatlon
polynomials constructed at Chebyshev mesh points,

k+i p cosnBsing,

L, [pr]_—Z( :m. T=CQSQ,

2m —1
2n

Po=Po(Ty), Tp=cosB,, 6,= a, m=1,2...., n.

Using the relation [10]

0oL, n=1, 2,...,

a
1 cosntdt __ sinn@
n jcosT—cos@ sinB ’
0

Fz)d

Vm:—EF(cost)

[,

1

and Eqgs. (1.11) and (1.16), we obtain the quadrature formulas

1
1 pltydt _ 1+4-cosd

2w | T—% ~ Tnsmno Epv s‘cosme smmﬁ—{—z EPv' (1.19)

24 V= m—ﬂ v=A1

1

2—:‘*- 5 P(Y)B(n, 1) dt = 2}17 2 (1 4-cos 8y) B (cos 8, cos 8,) p3;
—1 v=1

Ay — — 5 ¥ P (1 + 005.84) £, (c05 ), (1.20)
v=1 .
where IS »
o (0) = —— Fan (8%); Bz (89 = fan )
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Equations (1.19) and (1.20) make it possible to replace the basic equations by an infinite system of linear
algebraic equations with respect to the approximate values p‘L of the desired function at mesh points and also
with respect to the coefficients ay ., and B 4 5.

After simple computations, the singular equation is replaced by the system

L3

‘am\,93+-;—H;,* M) =0m=1,2,...,n, 1.21)
1

LR
) _ pylm—vi
amy = o [ 1+ ctg P otg IECDT 4 (442 B, %)y T = e
The system (1.21) is connected (closed) by two infinite systems ((3.3) and (3.5) from [4]) in which the expression
(1.20) is inserted in place of Ay,. The three systems specified completely determine the solution of the problem,
The coefficient of stress intensity is given by the expression

RV TI I R 0
K;= TVM (1—2f) Zi (—1)"pyctg .
=

A regular triangular array with wy =2 and w,=2e{!/917 was used for the numerical calculations. The calcula-
tions were performed on an M-222 computer. Inthe system (1.21) we set n=10, 20, and 30, which corresponded
to subdivision of the interval into 10, 20, and 30 Chebyshev mesh points, respectively, Using one of them, the
unknown coefficients B 4 ;3 were then eliminated from the remaining equations. It turned out that the values of
the critical external load and also of the coefficients a g 1.5 and B 4 5 Were essentially unchanged beginning with
n=20 (agreed up to the sixth digit).

Figure 2 shows calculated results for the critical (maximum) load o, = o’ } ©,/K1c as a function of the
crack length 7, = (I— A)/A for several values of the opening radius A =0.6, 0.5, 0.4, 0.3, 0.2, and 0.1 (curves
1-6).

As is apparent, stable development of a system of cracks (their mutual reinforcement) is possible for a
regular triangular array at certain values of the radius A of a circular opening. For a plate with a double
periodic system of cracks (A =0) having the same basic periods, there is no possibility of stabilization of crack
growth,

A solution for other external loads can also be obtained in a similar manner.

§2. Now letthe material of a perforated plate be ideally elastoplastic obeying the Tresca—Saint Venant
condition, according to which the maximum tangential stress at each point of a body does not exceed the shear
flow limit T74@27g=0g4, Where oy is the limit of stretch flow). It is known from the elastic solution of the prob-
lem of stretch in a perforated plate that the maximum stresses oy occur at the points t=+A +mw, +nw, (m,n=
0, +1, £2,...). Regions of plastic deformation will arise under a certain load in this case.

We consider the problem of initial development of plastic deformations under uniaxial stretching of athin
perforated plate by forces o... We assume that the plastic deformations are concentrated along certain slip
lines originating at the contour of an opening. The general tendency toward the formation of plastic regions in
the first stages of their development in the form of narrow slip bands occupying an insignificant portion of the
body in comparison with its elastic portion is well known experimentally [12, 18]. This is particularly typical
of materials which have a definite small area of flow (metals such as soft steel which tend toward retardation
of flow and which are usually better described by the Tresca—Saint Venant conditions) and also in the presence
of a stress state with sufficiently high stress gradients. From exact calculations, plastic regions have a ten-
dency toward localization in the slip line {14, 15]. For example, from an exact solution of the elastoplastic
problem of biaxial stretching of a plate with circular openings found in [15], the plastic zone is transformed
from a circular region to an elongated region with a width-to-length ratio of approximately 1:4 even for devia-
tion of the stress state at infinity from the uniform state by 0.1 (Ac /o ~0.1). As shown by experiment, plastic
regions in such cases will be a segment of length d(d=7 —A) (see Fig. 1). The thickness of the zone can be as-
sumed to be zero. In thin plates, it can be realized physically in the form of a slip plane at 45° to the plane of
the plate. Because of localization of plastic deformations, the elastoplastic problem being considered can be
reduced to the boundary problem in the two-dimensional theory of elasticity discussed in Sec. 1 with o4 re-
placing the right side of the boundary condition (1.3). The quantity 7, which now characterizes the length of the
plasticity zone, appears in the solution of Eq. (1.13) as an unknown parameter subject to determination.

Since the stress in an ideal elastoplastic material is bounded, the solution of the singular integral equa-
tion (1.13) should be sought in the class of everywhere bounded functions (stresses). The boundedness of the
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stresses at the ends =/ serves fo determine the parameter ! from which one can determine the length of the
plastic zone.

This means that for solution of Eq. (1.13) in the class (1.18) in conjunction with the two infinite systems
{see systems (3.3) and (3.5).in [4]), the equation

Z (—1)"p ctg - =0 @.1)

should be added to the system (1.21).

Equation (2.1) together with the systems noted makes up a closed system for determination of all un-
knowns in the problem. However, solution of this closed system for a given load o‘§.° is difficult because of the
nonlinearity of the algebraic equations with respect to the unknown parameter [ . Tt is therefore simpler to
assume a given value of 7 and to determine the load acting on the plate.

Figure 3 presents curves for the dependence of the length of the plasticity zone on the dimensionless ex-
ternal load ay/crs for several values of the opening radius A =0.6, 0.5, 0.4, 0.3, and 0.2 (curves 1-5).

Note that when |w 4| — @, we have a periodic system of circular openings with slits located along the x
axis; with l“’,{{" = and w, finite, we obtain a plate with a periodic system of parallel circular openings with
slits.
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